107 research outputs found

    Routing Games over Time with FIFO policy

    Full text link
    We study atomic routing games where every agent travels both along its decided edges and through time. The agents arriving on an edge are first lined up in a \emph{first-in-first-out} queue and may wait: an edge is associated with a capacity, which defines how many agents-per-time-step can pop from the queue's head and enter the edge, to transit for a fixed delay. We show that the best-response optimization problem is not approximable, and that deciding the existence of a Nash equilibrium is complete for the second level of the polynomial hierarchy. Then, we drop the rationality assumption, introduce a behavioral concept based on GPS navigation, and study its worst-case efficiency ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page

    Complexity and Approximation of the Continuous Network Design Problem

    Get PDF
    We revisit a classical problem in transportation, known as the (bilevel) continuous network design problem, CNDP for short. Given a graph for which the latency of each edge depends on the ratio of the edge flow and the capacity installed, the goal is to find an optimal investment in edge capacities so as to minimize the sum of the routing costs of the induced Wardrop equilibrium and the investment costs for installing the edge's capacities. While this problem is considered to be challenging in the literature, its complexity status was still unknown. We close this gap, showing that CNDP is strongly NP\mathsf{NP}-hard and APX\mathsf{APX}-hard, both on directed and undirected networks and even for instances with affine latencies. As for the approximation of the problem, we first provide a detailed analysis for a heuristic studied by Marcotte for the special case of monomial latency functions [P. Marcotte, Math. Prog., 34 (1986), pp. 142--162]. We derive a closed form expression of its approximation guarantee for arbitrary sets of latency functions. We then propose a different approximation algorithm and show that it has the same approximation guarantee. Then, we prove that using the better of the two approximation algorithms results in a strictly improved approximation guarantee for which we derive a closed form expression. For affine latencies, for example, this best-of-two approach achieves an approximation factor of 49/411.19549/41\approx 1.195, which improves on the factor of 5/45/4 that has been shown before by Marcotte

    Efficiency of Restricted Tolls in Non-atomic Network Routing Games

    Full text link
    An effective means to reduce the inefficiency of Nash flows in non- atomic network routing games is to impose tolls on the arcs of the network. It is a well-known fact that marginal cost tolls induce a Nash flow that corresponds to a minimum cost flow. However, despite their effectiveness, marginal cost tolls suffer from two major drawbacks, namely (i) that potentially every arc of the network is tolled, and (ii) that the imposed tolls can be arbitrarily large. In this paper, we study the restricted network toll problem in which tolls can be imposed on the arcs of the network but are restricted to not exceed a predefined threshold for every arc. We show that optimal restricted tolls can be computed efficiently for parallel-arc networks and affine latency functions. This generalizes a previous work on taxing subnetworks to arbitrary restrictions. Our algorithm is quite simple, but relies on solving several convex programs. The key to our approach is a characterization of the flows that are inducible by restricted tolls for single-commodity networks. We also derive bounds on the efficiency of restricted tolls for multi-commodity networks and polynomial latency functions. These bounds are tight even for parallel-arc networks. Our bounds show that restricted tolls can significantly reduce the price of anarchy if the restrictions imposed on arcs with high-degree polynomials are not too severe. Our proof is constructive. We define tolls respecting the given thresholds and show that these tolls lead to a reduced price of anarchy by using a (\lambda,\mu)-smoothness approach

    Coalition Resilient Outcomes in Max k-Cut Games

    Full text link
    We investigate strong Nash equilibria in the \emph{max kk-cut game}, where we are given an undirected edge-weighted graph together with a set {1,,k}\{1,\ldots, k\} of kk colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player vv consists of the kk colors. When players select a color they induce a kk-coloring or simply a coloring. Given a coloring, the \emph{utility} (or \emph{payoff}) of a player uu is the sum of the weights of the edges {u,v}\{u,v\} incident to uu, such that the color chosen by uu is different from the one chosen by vv. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games. Very little is known about the existence of strong equilibria in max kk-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in \cite{DBLP:conf/tamc/GourvesM10}. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce xx-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most xx. We prove that 11-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios.Comment: A preliminary version of this paper will appear in the proceedings of the 45th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM'19

    On the Price of Anarchy for flows over time

    Get PDF
    Dynamic network flows, or network flows over time, constitute an important model for real-world situations where steady states are unusual, such as urban traffic and the Internet. These applications immediately raise the issue of analyzing dynamic network flows from a game-theoretic perspective. In this paper we study dynamic equilibria in the deterministic fluid queuing model in single-source single-sink networks, arguably the most basic model for flows over time. In the last decade we have witnessed significant developments in the theoretical understanding of the model. However, several fundamental questions remain open. One of the most prominent ones concerns the Price of Anarchy, measured as the worst case ratio between the minimum time required to route a given amount of flow from the source to the sink, and the time a dynamic equilibrium takes to perform the same task. Our main result states that if we could reduce the inflow of the network in a dynamic equilibrium, then the Price of Anarchy is exactly e/(e − 1) ≈ 1.582. This significantly extends a result by Bhaskar, Fleischer, and Anshelevich (SODA 2011). Furthermore, our methods allow to determine that the Price of Anarchy in parallel-link networks is exactly 4/3. Finally, we argue that if a certain very natural monotonicity conjecture holds, the Price of Anarchy in the general case is exactly e/(e − 1)

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Resource Competition on Integral Polymatroids

    Full text link
    We study competitive resource allocation problems in which players distribute their demands integrally on a set of resources subject to player-specific submodular capacity constraints. Each player has to pay for each unit of demand a cost that is a nondecreasing and convex function of the total allocation of that resource. This general model of resource allocation generalizes both singleton congestion games with integer-splittable demands and matroid congestion games with player-specific costs. As our main result, we show that in such general resource allocation problems a pure Nash equilibrium is guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure Nash equilibrium.Comment: 17 page

    Congestion Games with Complementarities

    Get PDF
    We study a model of selfish resource allocation that seeks to incorporate dependencies among resources as they exist in modern networked environments. Our model is inspired by utility functions with constant elasticity of substitution (CES) which is a well-studied model in economics. We consider congestion games with different aggregation functions. In particular, we study LpL_p norms and analyze the existence and complexity of (approximate) pure Nash equilibria. Additionally, we give an almost tight characterization based on monotonicity properties to describe the set of aggregation functions that guarantee the existence of pure Nash equilibria.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-57586-5_1

    LP-based Covering Games with Low Price of Anarchy

    Full text link
    We present a new class of vertex cover and set cover games. The price of anarchy bounds match the best known constant factor approximation guarantees for the centralized optimization problems for linear and also for submodular costs -- in contrast to all previously studied covering games, where the price of anarchy cannot be bounded by a constant (e.g. [6, 7, 11, 5, 2]). In particular, we describe a vertex cover game with a price of anarchy of 2. The rules of the games capture the structure of the linear programming relaxations of the underlying optimization problems, and our bounds are established by analyzing these relaxations. Furthermore, for linear costs we exhibit linear time best response dynamics that converge to these almost optimal Nash equilibria. These dynamics mimic the classical greedy approximation algorithm of Bar-Yehuda and Even [3]
    corecore